


FINAL REPORT

Objective

The problem of the fusion of information provided by multiple sources appears in many

applications.  It plays a central role in the task of situation awareness.  It is required to enable

cooperation and coordination in military units.  In addition to information about observations

and perceptions about a particular situation we need consider information about criteria and

goals of various members of the organization.  Information provided by human sources are

often expressed in linguistic terms which are inherently imprecise.  The overall objective of this

research is the development of tools to aid in this complex task of information fusion.  In

support of this objective we look at a number of related problems.  Among these problems are

the development of structures for the representation of information and the establishment of

mathematical aggregation operators to allow the fusion of information.

Approach

The problem of information fusion can generically be seen to involve the following basic

steps

1. Collect information from various sources

2. Translate the information into some formal mathematical representation

3. Intelligently combine the information with the aid of mathematical aggregation

operators

4.  Retranslate the mathematical structures that result from the fusion in step three

into a language appropriate to be presented to human clients

While step one is clearly an important part of the process our main focus is on steps 2-4.

Because of the inherent imprecision and uncertainty involved in much of the battlefield type

information considerable use will be made of modern technologies that allow the formal

mathematical representation this kind of information.  In particular we make use of the

frameworks provided by the theory of fuzzy sets and the Dempster-Shafer mathematical theory

of evidence.

Scientific Barriers

Often the information available to military decision makers is based upon human

perceptions rather then precise measurements. This is particularly the case with respect to

information about an adversaries capabilities or intentions.  Because of the human limitations in



resolving detail, storing information and manipulating observations these perceptions are

generally imprecise (granular).  Statements such as "The enemy appears to have substantially

reduced the intensity of its defense" or "The probability that their fuel supply will last more

than a couple hours is small" or "The local population seems to growing tired of the disruption

caused by the resistance fighters" are examples of this type of perception based information.

Structures are needed for the representation of this type of information.

Significance

We believe that the work we are doing will help in the development of more intelligent

human centered military decision support systems.  This will be accomplished by allowing for

the formal inclusion in these systems of the types of imprecise information described above.  In

addition the technologies being developed will allow for the representation of the complex

concepts needed to capture the goals and criteria of interacting agents

Major Accomplishments

     Group Negotiation Framework

Negotiations between participants is an important part of the process of coordination and

cooperation.  Since future military units will more and more consist of a combination of

humans, robot soldiers and other non-human autonomous agents there is a need for the

development of tools and formal mathematical concepts to enable the cooperation and

coordination between these various possibly heterogeneous components.  We provided a

framework for automated multi-agent negotiation.  This framework involves a mediation step in

which the individual agent preference functions are aggregated to obtain a group preference

function.  It involves a selection procedure for choosing an alternative based on the final group

preference function.  Considerable attention was focused on the implementation of the

mediation rule where we allowed for a linguistic description of the rule using fuzzy logic.  A

particularly notable feature of our approach is the inclusion in the mediation step of a

mechanism rewarding the agents for being open to alternatives other then simply their most

preferred.

   Prioritized Aggregation Operators

Many decision processes require a prioritization of goals and criteria.  For example in

planning operations the safety of soldiers has highest priority.  A chain of command structure

imposes prioritization of goals and objectives  We developed formal mathematical aggregation

operators that allows decision making with prioritized criteria.  Our approach assigns



importance to lower priority criteria dependent on its satisfaction of higher priority ones

Technology Transfer

In cooperation with with researchers from the NASA Jet Propulsion Lab and U. of

Calgary  we developed a framework for a biometric based screening decision support system

that can be integrated within physical access control systems such as airport or border

checkpoints to aid the security personnel.  Central to our approach is a novel combination of

using biometric sensor data with soft computing reasoning and inference techniques developed

with our ARO support.  As individuals queue and pass through these access points biometric

sensed data using video, infrared and audio sensors is used to capture information about features

of appearance (both natural, such as aging and intentional, such as surgical changes),

physiological characteristics (temperature, blood flow rate), and behavioral features (voice and

gate).  This information is inputted to the second component of system, our knowledge base.

Using techniques from computational intelligence such as fuzzy logic, this information is

intelligently processed in a human-like fashion for indications of atypical physical features

and/or aroused (not ordinary) emotional states.  The output of this will be passed to a screen of

the access security personnel.

With the overwhelming daily flow of data and information intelligence analyst need

approaches to assist in focusing this flow to help detect any impending critical situations such as

domestic or foreign terrorism.  In cooperation with researchers at Stennis Space Center we have

began applying techniques developed with our ARO support to the development of a system to

aid in this task.  Central to our approach is the use of multiple concept hierarchies to generalize

the input data and uncover common concepts that may be found in the data.  This generalized

input is feed to our knowledge base to make further inferences about the current situation.  The

generalized inputs along any pertinent inferences are feed to a component which instantiates

potentially critical situations.  These situations are brought to the attention of an analyst for

further investigation.
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Abstract

The problem of multi-agent negotiation is considered. We provide an framework for the multi-agent negotiation

process in which each of the participating agents provides a preference function over the set of alternatives. This

framework involves a mediation step in which the individual agent preference functions are aggregated to obtain

a group preference function. The determination of the satisfaction of a stopping rule which decides whether a

suitable final group preference function has been obtained or whether the agents must participate in another round

of mediation. It also involves a selection procedure for choosing a alternative based on the final group preference

function. We describe various implementations for these different steps. Considerable interest is focused on the

implementation of the mediation rule where we allow for a linguistic description of the rule using fuzzy logic. A

particularly notable feature of our approach is the inclusion in the mediation step of a mechanism rewarding the

agents for being open to alternatives other then simply their most preferred.
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1. Introduction

The use of agents on the internet will be an important part of the future internet cul-
ture (Jennings and Wooldridge 1998; Wooldridge 2002; Parsons, Gmytrasiewicz, and
Wooldridge 2002). These agents will play a major role in performing personal tasks for
their human masters as will as being central to many aspects of E-Commerce. This situation
has led to considerable interest in the development of agent technology and in particular
interaction between agents. One form of interaction between agents is negotiation (Faratin,
Sierra and Jennings 1997; Beer etc 1999; Bartolini, Preist, and Jennings 2005; Rosenschein
and Zlotkin 1994; Kraus, 2001; Yager 1997).

The process of providing for automated multiple agent negotiation can be seen to require
among other things addressing at least the following two major tasks. The first task is the con-
struction of the protocol or framework to be used to implement the negotiating process. This
essentially involves describing the rules under which the negotiation process will take place.

The second task, given the protocol, involves the investigation of the appropriate strate-
gies an agent uses in trying to optimize their reward (satisfaction/payoff). In this work we
shall begin to look at possible protocols for implementing multi-agent negotiations. While
we shall make some comment on the task of determining strategies we leave this for a
future work. We note that the task of determining an agent’s best strategy is often extremely
complex.
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2. Basic Protocol for Multi-Agent Negotiation

In the following we begin to describe a framework for the multi-agent negotiation We shall
assume a collection of n agents and a set of X of alternatives. One of these alternatives
must be selected as the group choice. Furthermore, we assume that each agent has a real or
virtual mapping1 Vi that associates with each alternative x j a value Vi (xj) = vi j indicating
his perceived payoff for the situation in which alternative x j is chosen by the group. An
agents objective is to maximize his payoff. The agent’s perceived payoff need not be made
available to other agents in the negotiation although we don’t preclude the possibility of one
agent learning some information about other agent’s perceived worth of the alternatives.
This issue will be of more significance when one considers the task of having agents develop
optimal negotiation strategies.

The basic protocol of our proposed negotiation process is the following:

1. Each agent provides a preference function in terms of a mapping A j : X → [0, 1] such
that A j (xi ) indicates agent j’s support for alternative xi .

2. The individual agent preference functions are aggregated to obtain a group preference
function. We shall refer to this as the mediation step.

3. A stopping rule is tested

(i) If the conditions of the stopping rule is meet we go to step 4.
(ii) If the conditions of the stopping rule is not met we go to step 5.

4. Select an alternative based in the current group preference function and the negotiation
process is terminated.

5. Provide each of the agents with some information about the preceding mediation process,
ie: resulting group preference function.

6. Go to step one.

In Figure 1 we illustrate this algorithm:

Mediation
Step

Stopping
Rule

Satisfied

Group 
Preference
Function

No

Yes
Alternative
Selection

A
1

A
2

A n

Agents
Preference
Functions

Provide
Information
to Agents

Figure 1. Negotiation protocol.
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We assume that the negotiation process is such that a solution from the set X is always
obtained. This means that we are not considering situations in which we are reformulating
the solution set. The set of possible solutions is defined “a priori” and is fixed. This also
assumes the agents can’t withdraw. We also assume that the stopping rule is always satisfied
in a finite number of steps.

Essentially, the multi-agent negotiation is a dynamic process where at each stage of
the process an agent provides a preference function determined by its underlying payoff
function and any information available about the previous stages of the negotiation.

As we shall subsequently see it is the process of choosing these preference functions at
each round of the negotiations then constitutes a participating agent’s strategy. An important
consideration in an agent’s determination of their strategy are the rules and procedures used
in the negotiation process, steps 2–5 in the preceding negotiation algorithm. Here we now
turn to describing the protocol used in steps 2 to 5 of the negotiation process. We shall
describe various possible implementation of these steps.

3. The Mediation Step

Here we look at the mediation step (Yager 2004). This involves the process aggregating the
individual preference functions of the participating agents. It must be pointed out this is a
process taking place at each round in the negotiation process.

Our point of departure here is a collection of n agents and a set X of alternatives. We
assume each agent has provided a preference function Ai over the set X such that for
Ai (x) indicates the degree to which agent A supports alternative x . We can view Ai as a
fuzzy subset over X . Our objective in this mediation step is to obtain a group preference
function D: X → [0, 1] which associates with each alternative x ∈ X a value we D(x) =
F(A1(x), . . . , An(x)) indicating the degree to which x is supported by the group of agents.2

The form of F is called the mediation rule, it describes the process of combining the
individual preferences. Our goal here is to investigate different possibilities for mediation
rules. We note that we can give the mediation process an anthropomorphic nature and refer
to it as a mediation agent or simply a mediator.

One desired feature of any mediation rule is what Arrow (1951) calls positive association
between the group and the individual preferences. This essentially requires that if any agent’s
preference for some alternative increase the group’s preference for that alternative should
not decrease. More formally this requires that F be monotonic. That is, if x and y are two
alternatives and if of A j (x) ≥ A j (y) for all j then D(x) ≥ D(y). Another requirement
we desire in the mediator F is fairness. This means that all of the participating agents are
treated in the same way. This is closely related to what mathematicians call commutativity
(symmetry).

Beyond satisfying these properties the choice of the form for F can be used to reflect
a desired mediation imperative for aggregating the preferences of the individual agents to
get the group preference function.

Starting with the work of Bellman and Zadeh fuzzy logic has provided tools to aggregate
preference functions. In Bellman and Zadeh (1970) the authors suggested using as an



4 R. R. YAGER

aggregation imperative a desire to satisfy all the agents. Using this the authors obtained a
representation of D as

D ≡ A1 and A2 and . . . and An

This leads to a formal implementation as

D(x) = Min j [A j (x)]

Subsequent understanding of the nature of the multivalued logical “and” led researchers
to provide alternate definitions for the operator “and” using a t-norm (Klement, Mesiar and
Pap 2000). This provides a more generalized class of “anding” operators in addition to the
Min. In addition to the Min another example of t-norm is the product, D(x) = ∏n

j=1 A j (x).
We note that the use of the product operator results in a mediation rule closely related to
that used in the Nash (1950) bargaining model.

As noted by Yager (1988) the imperative of requiring that “all agents” be satisfied
by a solution may not be suitable for multi-agent preference aggregation. Is is a very
strong requirement that all agents be satisfied. In particular, we see that a single agent can
unilaterally doom any criteria, if A j (x) = 0 then D(x) = 0. In addition to giving each
agent a lot of power it is a difficult imperative to satisfy. Essentially this “anding” type
aggregation gives the most influence to the agent with the lowest score for the alternative.

Other mediation rules can be considered where the support of all the agents is not needed
and thereby relaxing this unilateral control. For example, a solution may be acceptable if
most of the agents support it. In an attempt to provide a more general class of aggregation
rules Yager (1996) introduced the idea of quantifier guided aggregation. This approach
allows a natural language expression of the quantity of agents that need to agree on an
acceptable solution. As we shall see the Ordered Weighted Averaging (OWA) operator
(Yager 1988; Yager and Kacprzyk 1997). will provide a tool to model this kind of softer
mediation rule.

4. OWA Operators

In order to be able to formally model these quantifier guided aggregations we shall use
the class of aggregation operators called Ordered Weighted Averaging (OWA) operators
introduced by Yager (1988).

Definition: An aggregation operator F : I n → I (I = [0, 1]) is called Ordered Weighted
Averaging (OWA) operator of dimension n if it has an associated weighting vec-
tor W = [w1w2 . . . wn] such that w j ∈ [0, 1] and

∑n
j=1 w j = 1 and where

F(a1, . . . , an) = ∑n
j=1 w j b j where b j is the j th largest element of the aggregates

{a1, . . . , an}
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An essential feature of this aggregation is the reordering operation, which is a nonlinear
operation. In the OWA aggregation the weights are not directly associated with a particular
argument but with the ordered position of the arguments. If ind is an index function
such that ind( j) is the index of the j th largest if the arguments than we can express
F(a1, . . . , an) = ∑n

j=1 w j aind( j).
Yager (1988) shows that OWA aggregation has the following properties:

(1) Commutativity: The indexing of the arguments is irrelevant
(2) Monotonicity: If ai ≥ âi for all i then F(a1, . . . , an) ≥ F(â1, , ân).
(3) Idempotency: F(a, . . . , a) = a.
(4) Boundedness: Maxi [ai ] ≥ F(a1 . . . . . . , an) ≥ Mini[ai ]

We note that these conditions imply that the OWA operator is a mean operator.
With the OWA operator the form of the aggregation is dependent upon the associ-

ated weighting vector. Yager (1993) investigated various different families of OWA ag-
gregation operators. A number of special cases of weighting vector are worth noting. The
vector W ∗ defined such that w1 = 1 and w j = 0 for all j �= 1 gives us the aggrega-
tion F∗(a1, . . . , an) = Maxi [ai ]. Thus W ∗ provides the largest possible aggregation. The
vector W∗ defined such that wn = 1 and wi = 0 for i �= n gives us the aggregation
F∗(a1, . . . , an) = Mini [ai ]. This vector provides the smallest aggregation of the argu-
ments. The weighting vector Wave defined such that wi = 1/n for all i gives us the simple
average FA(a1, . . . , an) = 1

n

∑n
i=1 ai . The weighting vector W k defined such that wk = 1

and wi = 0 for i �= k gives us F(a1, . . . , an) = bk where bk is the kth largest of the ai .
Another case of OWA aggregation is called the Olympic operator, in this case w1 = wn = 0
and wi = 1

n−2
for the other components. In this case we are eliminating the extreme scores.

Associated with any OWA aggregation a measure called its attitudinal character. If W is
a weighting vector of dimension n then the attitudinal character is defined as

A − C(W ) = 1

n − 1

n∑
i=1

(n − i)wi .

It is easy to show that this measure lies in the unit interval. Furthermore it can be shown that
A −C(W ∗) = 1, A −C(Wave) = 0.5 and A −C(W∗) = 0. In the framework of multi-agent
preference aggregation the attitudinal character can be seen as being inversely related to an
individual agent’s power in rejecting an alternative. Thus A − C(W ) = 0 indicates that any
individual agent can unilaterally doom an alternative. As A − C(W ) moves from zero to
one the individual agents power of rejection decreases, more agreement is needed to doom
an alternative.

An interesting family of OWA operators are the E − Z OWA operators. Actually there
are two families. The first family is defined via a weighting vector W such that

wi = 1/q for i = 1 to q
wi = 0 for i = q + 1 to n
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Here the first q weights are the same and the remaining weights are zero. For this operator
A − C(W ) = 1

2
+ 1

2
( n−q

n−1
). In particular A − C(W ) ≥ 0.5. Here we are taking the average

of the q largest arguments.
The other family of E − Z operators are such that W is defined by

wi = 0 for i = 1 to q − 1

wi = 1
n−q for i = q + 1 to n

Here the last n − q weights are the same and the first q weights are zero. We see in
this case that A − C(W ) = 1

2
( n−q

n−1
). and therefore A − C(W ) ≤ 0.5. We note that as we

increase the number of elements that have zero weight, make q larger, we decrease the
value of A − C(W ). When all elements except the last, wn , are equal to zero we obtain the
Min operator. We see that this operator can provide a softening the original Min mediation
rule.

5. Quantified Guided Mediation

In the preceding when we used the Min for calculating our group preference function we
have essentially implemented the following linguistic agenda for our mediation rule.

All agents must be satis f ied by a solution.

As we noted in many situations the requirement that all agents be satisfied is too strong
and more reasonable mediation rules might be.

Most agents must be satis f ied by a solution.

At least about half the agents must be satis f ied by a solution.

The above statements are examples of what we call quantifier guided aggregations. In
these statements the underlined terms are examples of what Zadeh (1983) called relative
linguistic quantifiers.

In natural language we find many examples of relative linguistic quantifiers. These
objects are exemplified by terms such as all, most, many, at least half, some and few. Zadeh
(1983) suggested a formal representation of these linguistic quantifiers using fuzzy sets.
He suggested that any relative linguistic quantifier can be expressed as a fuzzy subset Q of
the unit interval I = [0, 1]. In this representation for any proportion y ∈ I , Q(y) indicates
the degree to which y satisfies the concept expressed by the term Q. In most applications
of the quantifier guided aggregation we use a special class of these linguistic quantifiers,
called Regular Increasing Monotone (RIM) quantifiers. These types of quantifiers have the
property that as more agents are satisfied our overall satisfaction can’t decrease. Formally,
these quantifiers are characterized in the following way:

1. Q(0) = 0, 2. Q(1) = 1 and 3. Q(x) ≥ Q(y) i f x > y.
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Examples of this kind of quantifier are all, most, many, at least α.
The quantifier for all is represented by the fuzzy subset Q∗ where Q∗(1) = 1 and Q∗(x)

= 0 for all x �= 1. The quantifier any is defined as Q∗(0) = 0 and Q∗(x) = 1 for all x �= 0.
Both of them are examples of RIM quantifiers.

Having introduced the OWA aggregation operator we are now in a position to describe
the process of quantifier guided aggregation. Again assume that we have a collection of
n agents. These agents have their preferences represented as fuzzy subsets over the set of
alternatives X , A1, A2, . . . , An . Under the quantifier guided mediation approach a group
mediation protocol is expressed in terms of a linguistic quantifier Q indicating the proportion
of agents whose agreement is necessary for a solution to be acceptable. The basic form of
the mediation rule in this approach is

Q agents must be satisfied by an acceptable solution,

where Q is a quantifier.
The formal procedure used to implement this mediation rule is described in the following.

The quantifier Q is used to generate an OWA weighting vector W of dimension n. This
weighting vector is then used in an OWA aggregation to determine the group support for
each alternative. For each alternative the argument of this OWA aggregation is the degree
of support for that alternative by each of the agents, Ai (x), i = 1 . . . n. Thus the process
used in quantifier guided aggregation is as follows:

(1) Use Q to generate a set of OWA weights, w1, . . . , wn .
(2) For each alternative x in X calculate the overall group support

D(x) = F(A1(x), A2(x), . . . , An(x))

The procedure (Yager 1996) used for generating the weights from the quantifier is

wi = Q(
1

n
) − Q(

i − 1

n
) for i = 1 . . . n.

Because of the nondecreasing nature of Q it follows that wi ≥ 0. Furthermore from the
regularity of Q, Q(1) = 1 and Q(0) = 0, it follows that

∑
i wi = 1. Thus we see that the

weights generated are an acceptable class of OWA weights.
The use of a RIM quantifier to guide the aggregation essentially implies that the more

agents satisfied the better the solution. This condition seems to be one that is naturally
desired in multi-agent mediation. In Figure 2 we show a prototypical example of a RIM
linguistic quantifier and illustrate the process of determining the weights from the quantifier.
Here we see that w j = Q( j

1
) − Q( j−1

n ). We see that the weights depend on the number of
agents as well as the form of Q.

In Figure 3 we show the functional form for the quantifiers “all” and “any”, Q∗ and Q∗.
As we have indicated in the first case, “all”, we get the weighting W∗ where wn = 1 and in
the second case, “any”, we get the weighting W ∗ where w1 = 1.
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Figure 2. Getting the weights from the quantifier.

Figure 3. Quantifiers “all” and “any”.

One feature which distinguishes the different types of mediation rules is the power of an
individual agent to eliminate an alternative. For example in the case of “all” this power is
complete. In order to capture this idea we shall associate with each linguistic quantifier Q
a measure called the Value Of Individual Disapproval (VOID) which we define as

VOID(Q) = 1 −
∫ 1

0

Q(r ) dr

It is easy to see VOID(Q) ∈ [0, 1]. We also note that VOID(Q∗) = 1 and VOID(Q∗) = 0.
We note that it is an expression of the complement of the attitudinal character in terms of
the quantifier function instead of the weighting vector W .

Consider the class of linguistic quantifier that corresponds to “at least αth percent”. This
corresponds to a mediation imperative that says “at least 100 × α% of the agents must
be satisfied for a solution to be acceptable.” This type of quantifier can be represented as
Q(r ) = 0 if r < α and Q(r ) = 1 if r > α (see Figure 4). For this quantifier VOID(Q) = α.
We also note that here w j = 1 for j such that j ≥ αn and j − 1 < αn. Here all other OWA
weights are zero.

In our approach thus far we describe our mediation rule in terms of a RIM quantifier
expressed in terms of natural language. We then convert this linguistic descriptions into
a fuzzy subset Q on the unit interval. Here Q is a function Q: [0, 1] → [0, 1] such
that Q(x) ≥ Q(y) : x ≥ yQ(1) = 1 and Q(0) = 0. We denote functions with these
properties as Basic Unit-interval Monotonic (BUM) functions. The requirement that we
initially describe our mediation rule using a natural language verbal description can be
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0 1

1

r

Q(r)

α

Figure 4. At least α percent.

limiting. More generally any function Q having the properties of a BUM function can be
seen to be an appropriate form for generating mediation rules. Thus we can consider two
approaches to generating these quantifier based mediation rules. One approach is to start
with a linguistic expression and then obtain the associated function Q. A second approach
is to allow the mediation rule to be directly expressed in terms of a function Q. One very
important characteristic of this second method is that we can easily introduce into our
mediation a number of formal properties that are not very easily expressed using a verbal
description of the quantifier.

Thus in our approach we shall not feel restricted in our method of describing the mediation
rule. We shall feel free to use natural language or formal functions to describe our quantifier.
This ability to navigate between language and formal mathematical structures is one of the
benefits of using fuzzy set methods.

We now consider some examples of quantifiers which are directly expressed in term of
formal function. We note while these result in some very common forms of mediation rules
they are not naturally expressible in linguistic terms .

A very important example of quantifier is the linear one, Q(r ) = r see Figure 5.
For this quantifier we get w j = 1

n , all the agents get the same weight. Also for this
VOID(Q) = 0.5.

Closely related to this linear function are two other functional forms. As we shall see
these functions give weighting vectors close to the E − Z OWA aggregation (Yager 2003).
The first of these Q Z is shown in Figure 6. For this quantifier VOID(Q) = 1

2
(1 − β) and

therefor VOID(Q) ∈ [0, 0.5].

0 1

1

r

Q(r)

Figure 5. Linear quantifier.
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0 1

1

r

Q(r)

β

Figure 6. Piecewise linear QZβ
quantifier.

Let us look at the weights generated by Q Zß
. Here for simplicity we shall assume ßn is

an integer. Let us denote this integer as q. In this case with w j Q( j
n ) − Q( j−1

n ) we easily

see that w j = 0 for j ≤ q and w j = 1
n−q for j > q The important observation here is that

the weights go into two categories: those that are zero and those that are equal. We see this
the E − Z OWA weights.

We note that if ßn = q is not an integer then we get one additional weight class that
transitions until we get integers. This if q1 is the largest integer less than q and if q2 is the
smallest integer larger than q . We have

w j = 0 j ≤ q1

w j = q2 − q

n(1 − β)
j = q2

w j = 1

n − q2

q2 + 1 ≤ j ≤ n

Closely related to this quantifier Qzα
shown is Figure 7. In this case VOID(Qzα

) = 1 − 1
2
α

and we see that VOID(Qzα
) ∈ [1, 0.5].

Between these two functions, Q Zβ
and Q Zα

, we can attain any degree of VOIDness. For
the most part in multi-agent preference mediation we are interested in the situation in which
VOID(Q) ≥ 0.5. That is we desire many of the agents satisfied.

0 1

1

r

Q(r)

α

Figure 7. Piecewise linear QZα
quantifier.
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Another family of quantifiers are those expressed by Q(r ) = r P for p > 0. In this case

VOID(Q) = 1 −
∫ 1

0

r P dr = 1

p + 1
.

For this quantifier with w j = ( j
n )p − ( j−1

n )p we see that as p increases we get closer to
the Min. On the other hand as p gets closer to zero we get the Max.

6. Understanding the Negotiation Process

What must be kept in mind in the negotiation process is that each agent has a single interest,
the maximizing of its payoff as reflected by the function Vi . We recall Vi (x) is the payoff
attained by agent i if the group selects alternative x . For any x the greater the group support
for x , D(x), the greater the possibility of x being selected. Hence one focus of the individual
agent is to try to get high scores in D for those alternatives he desires and low scores for
those alternative he doesn’t. With this in mind an agent’s choice of preference function
at each stage in the negotiation process is his vehicle for attaining this goal. With D(x)
= F(A1(x), . . . , An(x)) and the fact that F is monotonic leads to a direct approach for each
agent in attaining their goal, give high scores to those you want and low scores to those
you don’t. Thus the monotonicity of the aggregation process rewards complete selfishness.
Support only those alternatives you want.

On the other hand, by its very nature, the process of negotiation is one in which we
are trying to accommodate the views and desires of other agents. This suggests that an
appropriate negotiation process should reward those participating agents that are more
open to other people’s views. That is we want to reward those agents who are not totally
selfishly only focusing on their own self interest. We need some mechanism in the mediation
process to reward those agents that are most adaptable with respect to the solutions they
can accept. Thus where the monotonicity property of the preference aggregation function
process correctly drives the mediation process by the self interest of the individual agents, we
need some additional mechanism to reward those agents that are most open to solutions. One
reasonable mechanism for introducing this consideration is to increase the importance of
those agents who are more accommodating regarding the choice of alternatives. In Figure 8
we illustrate our various considerations in the formulation of the mediation function.

In anticipation of providing a mechanism for rewarding agent openness we turn to the
issue of including an agent’s importance in the quantifier guided aggregation process.

7. Importance Weighted Quantifier Guided Aggregation

We now turn to the implementation of the quantifier guided multi-agent mediation step in
the case in which the agents can have differing importance (Yager 1997). We again assume
we have a set of n agents whose preferences are expressed as fuzzy subsets, Ai , over the
space of alternative solutions X . We now additionally assume that we can associate with
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Figure 8. Considerations in mediation process.

each agent a value ti indicating the importance of that agent in the mediation process. All
we need assume is that the t ′

i s are non-negative although here we restrict ourselves to the
special case where Vi ∈ [0,1]. We make no restrictions on the total value of importances,
that is they need not sum to one.

In introducing quantifier guided aggregation we noted that our mediation rule was ex-
pressed by the statement Q agents are satisfied by x. In this case with importances we modify
the mediation rule to be

Q important agents must be satisfied by an acceptable solution.
In the following we describe the procedure to evaluate the overall support for an alter-

native x under this rule. First we note that for a given alternative x we have a collection
of n pairs (ti , Ai (x)), here ti is the importance of the ith agent and Ai (x) is the support it
gives to alternative x . The first step in this process is to order the Ai (x)’s in descending
order. We let b j be the j th largest of Ai (x), b j = Aid( j)(x). Furthermore, we let u j denote
the importance associated with the agent that gives the j th largest support to x, u j = tid( j).
Thus if A5(x) is the largest of the Ai (x) then b1 = A5(x) and u1 = t5. At this point we can
consider our information regarding the alternative x to be a collection of n pairs (u j , b j )
where the b′

j s are in descending ordering.
Our next step is to obtain the OWA weights associated with this importance weighted

aggregation. As discussed in Yager (1997) we obtain these weights as

w j = Q

(
SJ

T

)
− Q

(
Sj−1

T

)

where Sj = ∑ j
k uk and T = ∑n

k=1 uk , the total sum of importances. Having obtained the
weights we can now calculate the valuation D(x) associated with x as D(x) − ∑n

j=1 w j b j .
We emphasize that the weights used in this aggregation will generally be different for each
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x . This is due to the fact that the ordering of the Ai ’s will be different and in turn lead to
different u j ’s and hence different w j .

It can be shown in the special case where Q(r ) = r , the unitor quantifier, this approach
leads to the ordinary weighted average D(x) = 1

T

∑n
i=1 ti Ai (x).

The following example illustrates the application of the above method
Example: We shall assume four agents A1, A2, A3, A4. The importances associated with

these agents are t1 = 0.1, t2 = 0.6, t3 = 0.5, t4 = 0.9. We assume the support to alternate
x given by each of the agents is: A1(x) = 0.7, A2(x) = 1, A3(x) = 0.5 and A4(x) = 0.6.
We further assume that the quantifier guiding this mediation is most which is defined by
Q(r ) = r2. In this case ordering the agent support for x give us

b j u j

A2 1 0.6
A1 0.7 0.1
A4 0.6 0.9
A3 0.5 0.5

We note that T = ∑4
i=1 u j = 3. Using this we calculate the weights associated with x :

w1 = Q
(

0.6
3

) − Q
(

0
3

) = (0.2)2 − 0 = .04 w2 = Q
(

1.6
3

) − Q
(

0.6
3

) = .28 − .04 = .24

w3 = Q( 2.5
3

) − Q
(

1.6
3

) = .69 − .28 = .41 w4 = Q
(

3
3

) − Q
(

2.5
3

) = 1 − .69 = .31

In this case D(x) = ∑4
j=1 w j b j = (.04)(1) + (.24)(.7) + (.41)(.6) + (.31)(.5) = .609.

We now consider some of the properties associated with the introduction of agent im-
portances in the mediation process. We first investigate how the OWA weights associated
with the arguments change as we change the importance weights. In the following, without
loss of generality, we assume the original agent indexing is consistent with the ordering.

Observation: If the importance weight of an agent increases, while the importances of
the other agents remains the same, then its new OWA weights in the aggregation is at least
as big as its original OWA weight.

Proof: Assume the original importance of the agents are u j and the new impor-
tance weights are ũ j , where ũ j = u j for j �= q and ũq = uq + � with � > 0. Let

T = ∑n
j=1 u j and Si = ∑i

j=1 u j . In this situation the original OWA weight for agent

q is wq = Q(
Sq

T ) − Q(
Sq−1

T ) and its new OWA weight is w̃q = Q( S̃
T̃

) − Q(
S̃q−1

T ) where

T̃ = T + �, S̃q−1 = Sq−1 and S̃q = Sq + �. In this case

w̃q = Q

(
Sq + �

T + �

)
− Q

(
Sq−1

T + �

)
We see that

Sq−1

T >
Sq−1

T +�
. Furthermore

Sq+�

T +�
− Sk

T = T Sk+T �−T SK −�Sk
T (T +�)

= �(T −Sk )
T (T +�)

> 0 and

thus
Sq+�

T +�
≥ Sk

T . From the monotonicity of Q we see

w̃q − wq = Q

(
Sq + �

T + �

)
− Q

(
Sq − 1

T + �

)
−

(
Q

(
Sq

T

)
− Q

(
Sq − 1

T

))
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w̃q − wq =
(

Q

(
Sq + �

T + �

)
− Q

(
Sq

T

))
+

(
Q

(
Sq − 1

T

)
− Q

(
Sq − 1

T + �

))
≥ 0

Other than this situation the effect of a change in importances is strongly dependent upon
Q, the type of mediation imperative being used.

Looking at the linear mediation imperative, Q(x) = x , allows us to obtain a deeper
understanding of the effect of changes in importances. Assume each agent has an importance
ti and let T = ∑n

i=1 ti . In the case of the linear mediation imperative we get wi = ti
T . Assume

now that each of the agents has a �i change in its importance. Here the new importance
of each agent is ti + �i . We shall let � = ∑n

i=1 �i . In this case the new weight associated

with the i th agent is w̃i = ti +�i
T +�

. Consider the ratio w̃i
wi

=
ti +�i
T +�

ti
T

= ti +�i
T +�

T
ti

= 1+ �i
ti

1+ �
T

. We see

that those agents in which �i
ti

> �
T will have an increase in weight. Those for which �i

ti
< �

T

will have a loss in weight and those for which �i
ti

= �
T will remain the same.

It is interesting to consider the situation in the case in which we use the mediation function
shown in Figure 6 to guide the aggregation. For simplicity we shall consider the situation in
which our argument is the collection [(b1, μ1), . . . , [bn, μn] where the bi are in descending
order, and the μi are normalized,

∑
i μi = 1. In this case w j = Q(μ j ) − Q(μ j − 1). For

simplicity we shall also assume the
∑k

j=1 μ j = β, the sum of first k normalized importances
exactly equals β. Here

w j = 0 for j = 1 to k and w j = μ j

1 − β
for j = k + 1 to n

Thus the first k arguments have zero weight. The remaining weights are simply the agents
importance weight normalized by 1 − β. Thus for this mediation imperative we have

D(x) = 1

1 − β

n∑
j=k+1

b j u j

8. Associating Importances with Agents

We now consider the process for assigning the importance to each of the agents in the
mediation process. As we indicated our purpose in including importances is to reward those
agents who are most open to solutions. With this in mind, one way to accomplish this is to
associate with each agent an importance value equal to the sum of the scores in its preference
function.

Consider the situation in which X = {x1, . . . , xn}. Assume the kth agent has preference
Ak , here Ak(xi ) is the support he allocates to alternative xi . We let Ik = ∑n

i=1 Ak(xi ) be
the importance weight associated with the kth agent. Using this we see the the more open
an agent is to solutions the more important the agent is in the mediation process. An agents
importance charges at each stage in the negotiation as it depends on the preference function
he supplies in that round. The following example illustrates this approach to rewarding
agent openness.
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Example: Assume two agents and four alternative x = {x1, x2, x3, x4}. Assume our
mediation is based on the quantifier is Q(y) = y. Let A1 = { 1

x1
, 0.5

x2
, 0

x3
, 0

x4
} and

A2 = { 1
x1

, 0.3
x2

, 0.7
x3

, 1
x4

}. For agent 1 I1 = 1.5 and for agent 2 I2 = 2. The normalized

importances are μ1 = 1.5
3.5

= 0.43 and μ2 = 2
3.5

= 0.57. We now calculate

D(x j ) = .43
.57

A1(x j ) + .57 A2(x j ). Here

D(xj)
x1 .0.43
x2 0.385
x3 0.4
x4 .0.57 ⇐

Thus the agent with most openness gets his preferred solution
We note that other formulations for calculating the importances can be considered. Let us

look at some of these. One more generalized form is to define Ik = ∑n
i=1 g(Ak(xi )) where

g is monotonic. A particular example is where g is defined such that:

g(y) = 0 if 0 ≤ y < α

g(y) = 1 if α < y ≤ 1

Thus here if an agent supports an alternative with value greater than α than gets full credit
for supporting it. Another formulation is to have Ik = ∑n

i=1(g(Ak(xi ))
b here we want be

b ∈ (0, 1].
The general idea we are proposing here is the rewarding of agents for being accommo-

dating to different solutions in the negotiation process by correlating their importance with
the quantity of solutions they are supporting.

9. Stopping Rule

An important part of the negotiation process is the stopping rule. This is the rule that
determines when we stop the rounds of mediation, it decides the final group preference
function. The form of the stopping plays an important part in the determination of the
strategy that an agent uses in the negotiation process. Here we shall consider some examples
of stopping rules.

One basic form of stopping rule is a fixed round of mediation. Here we initially select
some integer value m and we stop after m rounds of mediation. Thus the group preference
function obtained during the mth round of mediation is used to determine the group’s choice
of alternative.

Another class of stopping rules are those based on the idea that we should stop when
some agreement has been reached by the participating agents. One type of agreement is with
respect to the group’s preferred alternative solution. One possible method for determining
this is the following. Let D: X → [0,1] be the group preference function after the mediation
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step. Let ρ be a permutation of the alternatives so that xρ( j) is the alternative with the j th
largest score in D. In this case D(xρ( j)) is the score of the alternative with the j th largest
support. We now let � = xρ(1) − xρ(2), the difference between the two highest supports.
Under this stopping rule we “a priori” select some value α and stop the rounds of mediation
once we obtain � ≥ α. In this case, � ≥ α, we essentially have found some alternative
that the group has agreed in the most preferences. One problem here is that this condition,
� ≥ α, may never be satisfied. Thus using this type of stopping rule may require some
back-up rule, such as stop after m rounds. It is also possible to make α dependent upon
the number of rounds k. In the case if α(k) is the threshold we use after k rounds then we
require that α(k1) ≤ α(k2) if k1 > k2.

A second type of agreement is where the agents have concurred on a group preference
function. One method of determining this is as follows. Let Dk−1 and Dk be the group
functions obtained after the k − 1th and kth iteration. Let CLOSE (Dk, Dk−1) ∈ [0, 1]
indicate the degree of closeness between these two preference functions. If we a priori
select some value δ then we say that the group has agreed on a preference a function if
CLOSE(Dk, Dk − 1) ≥ δ. Thus we stop if the condition has been attained. This approach
raises the issues of measuring the distance between these group preference functions. How-
ever, since these group preference functions can be viewed as fuzzy subsets we can draw
up the copious literature on calculating the distance between fuzzy sets. We briefly describe
some methods to calculate CLOSE(Dk, Dk − 1).

Early work on calculating the distance between fuzzy subsets was presented in Kaufman
(1975). The fundamental unit in discussing the distance between two fuzzy subsets, Dk

and Dk−1, is the elementary difference � j = |Dk(x j ) − Dk−1(x j )|. We note � j ∈ [0, 1].
Using this we can introduce a Hamming like measure of the distance between the two sets
Dist1(Dk, Dk − 1) = 1

n

∑n
j=1 � j . We note Dist1(Dk, Dk−1) ∈ [0, 1].

A more general measure of the distance between two fuzzy subsets can be ob-
tained if we use the generalized mean. In this case Distα(Dk, Dk−1) = ( 1

n

∑n
j=1 � j

α)1/α

where α ≥ 1. For α = 1 we get the Hamming formula. For α = 2 we get
Dist2(Dk, Dk−1) = Max j [

∑n
j=1 � j

2]1/2 which is a Euclidean type measure. For α → ∞
we get Dist(Dk, Dk−1) = Max j [� j ], it is the largest of elementary differences.

Using this measure of Dist we can define our desired measure of closeness as

CLOSE(Dk, Dk − 1) = 1 − Dist(Dk, Dk−1)

In the preceding we have introduced a definition for a fuzzy relationship Dist and then
expressed CLOSE as Not Dist. In the following we shall suggest some alternative, more
intelligent ways of defining the relationship CLOSE. Again we shall introduce a relationship
Dist and define CLOSE as Not Dist, however our definition of Dist will be different then
in the preceding

Here we shall say that Dk and Dk−1 are distant if there exists at least Q elements
in X that have a membership grades in Dk and Dk−1 that are far from each other. In-
dividually we can express the degree of farness of an element’s membership grade as
� j = |Dk(x j ) − Dk−1(x j )|. We shall define the quantity Q using a fuzzy subset Q over
the space of non-negative integers N . Under this definition Q( j) indicates the degree to
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which j elements satisfy the concept of “at least Q”. We note that Q must be monotonic,
Q( j) ≥ Q(i) if i > j . Before proceeding we introduce a notational convention. We let
index(k) be the index of the kth largest � j , thus �index(k) is the value of the kth largest
distance between the membership grades of the two fuzzy subsets. Using this we express
the relationship Dist as

Dist(Dk, Dk−1) = Max j[Q( j)�index( j)]

In the preceding we used as the measure of farness between two membership grades,
Dk(x j ) and Dk−1(x j), the value � j . A further degree of sophistication can be added if we
introduce a fuzzy subset FAR on the unit interval such that FAR(0) = 0, FAR(1) = 1 and
FAR(a) ≥ FAR(b) if a > b. Using this we can modify our definition of Dist to be Dist
(Dk, Dk−1) = Max j [Q( j)FAR(�index( j))].

In introducing FAR we are allowing for a refinement of the concept of two membership
grades being far apart. For example we can define FAR such that:

FAR(�) = 0 if � ≤ a FAR(�) = � − a

b − a
if a ≤ � ≤ b FAR(�) = 1 if� ≥ b

Here we allow some range, less than a, where we consider the difference insignificant,
while for � ≥ b we assume farness is complete. We can also make the transition non-linear
by defining

FAR(�) = 0 if � < a FAR(�) =
(

� − a

b − a

)p

if a ≤ � ≤ b FAR(�) = 1 if � ≥ b

where p ≥ 0. We see that if p → 0 this essentially reduces to a binary definition with
boundary at � = a. If p → ∞ we also get a binary definition with boundary at � = b.

One problem with using this type of measure of closeness as our stopping rule is that
we may never obtain two adjacent group preference functions that are close enough to each
other to stop the process. One way to deal with this problem is to make the requirements for
closeness dependant upon the number of iterations the negotiation process has gone through.
Let us take a brief look at how to formulate this. In the following we shall let r indicate the
number of rounds of mediation. Using our definition of closeness, CLOSE(Dkm Dk−1) =
1 − Distant(Dk, Dk−1) where Distant(Dk, Dk−1) = Max j [Q( j · FAR(�index( j)] we stop
when CLOSED, (Dk, Dk−1) ≥ δ or when Dist (Dk, Dk−1) ≤ 1 − δ.

Our goal in considering the number of rounds in the negotiation process is to make
things appear closer as we increase r. This means we want to reduce the distance be-
tween fuzzy subsets as the value of r increases. Essentially if we let Distr (Dr , Dr−1) =
Max j [Qr ( j) · FAR(�index( j)] indicate the distance between Dk and Dk−1 after the r th round
we want

Dist r2(A, B) ≤ Distr1
(A, B) if r2 > r1.
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Figure 9. Prototypical form for Q

Essentially we want Qr2
( j) ≤ Qr1

( j) for r2 > r1. Thus we want Q to be a decreasing
function of r. In Figure 9 we show the prototypical form for Qr . One approach to obtaining
our objective is to define Qr as follows

Qr ( j) = 0 if j ≤ n1(r ) Qr ( j) = j − n1(r )

n2(r ) − b
if n1(r ) ≤ j ≤ n2(r )

Q1( j) = 1 if j ≥ n2(r )

We then let n1(r ) and n2(r ) be increasing functions of r .
Here we describe another method for terminating the rounds of mediation. This can be

seen to be in the spirit of the game of “musical chairs” Assume that at the end of the kth
round of mediation Dk is the group preference over the set X . Assume that alternative xq

is such that Dk(xq ) = Minx∈X [D(x)], it is the alternative least preferred by the group. In
this method we eliminate xq from the set of possible alternatives. So in this situation the
set of possible alternatives changes in each round, it gets reduced by one. We note that this
stopping rule results in a fixed number of mediation rounds. If we start with n alternatives
we need n −1 mediation rounds to get down to one element. One issue that we must address
is if two or more elements are tied with the lowest score. Here we suggest using a random
mechanism to select one among these to be eliminated.

10. Information Availability

We must emphasize here the distinction between a participating agent’s valuation function
Vk and the preference function Ak he provides to the mediation at a given step in the process.
The preference function is a mapping Ak : X → [0, 1], that associates with each alternative
a value in the unit interval corresponding to the support he is giving to the alternative. It is
dynamic and can change at each round in the negotiation process. The form of Ak is guided
by the strategy the agent is using in the negotiation process. It is informed by the agent’s own
valuation function as well as any information the agent may have about the other agent’s
preferences. We note that an agent’s valuation function, Vk , is assumed, although this is not
necessary, to be static and unchanging. The valuation function reflects his perceived worth
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of an alternative. It is noted that the form of this can be very precise or extremely imprecise.
An agent may have an exact quantitative value for each x ∈ X . It may only be a linear
ordering. It can be a very imprecise unquantified image possessed by the agent. All that
is necessary however is that the agent provides a precise preference function. In addition
to having information about his own value function each agent should be provided with
some information about the negotiation process. It appears that at the very least each agent
should be provided with the group preference function that results after each mediation
round. Another possibility is that each agent is given the preference functions provided by
the other agents at each round of mediation. This is clearly more informative. Part of the
formulation of the negotiation protocol is the determination of what type of information is
provided. Another issue is whether individual agents can exchange information between
themselves.

We noted that the strategy an agent uses to provide his preference function is informed
by what he knows about the other agents preferences. The source of this is the data supplied
about the group preferences and the other agents preference functions in preceding rounds.
However, the task of extracting knowledge from this data in a form that is useful for the
determination its subsequent preference functions is generally quite difficult and not within
our current interest. But this is an important problem.

11. Selection Process

In fourth step of our negotiation algorithm we select the alternative based upon the final
group preference function. Thus here our point of departure is a mapping D: X → [0, 1]
where D(x) is the groups support for alternative x . The most obvious procedure here is
to select alternative x∗ such that D(x∗) = Maxx∈X [D(x)], that is we select the alternative
with the most support. We shall refer to this as the standard selection process. We note
that with this standard selection process if two alternatives are tied we must use a random
selection to choose between them, a coin toss. In many ways this standard selection process
is extremely brittle. Consider the situation in which x1 has the maximum score D(xi ) = .83
while D(x2) = .825 here we would select x1. However a small change in D(x2) could make
these tied or even cause of selection of x2 over x1. Given the very subjective and imprecise
nature of the manner in which each individual agent determines its preference function this
type of brittle selection process may not be always advisable. In the following we shall
suggest some alternate methods for selecting the winning alternative from the final group
preference function.

One method is based upon the use of a parameter λ > 0, although normally we use λ ≥ 1.
In this method we proceed as follows. We first associate with each x ∈ X a probability

P(xi ) = D(xi )
λ∑

j D(x j )λ

We then randomly select our selected alternative using a biased random experiment with
these probabilities. We note that if λ → ∞ then P(x∗) = 1 if D(x∗) = Maxx∈ D(x) and
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D(x j ) = 0 if x j �= x∗. This is essentially what we called the standard selection process.
Parenthetically we note in this case if q alternatives are tied where the biggest value then
they each get probability 1

q while all the others are assigned probability zero. If λ = 1

then P(xi ) = D(xi )∑
j D(x j )

it is simply the normalization of the scores. We note that if λ > 0

then any x j with D(x j ) = 0 has P(x j = 0) and has no chance of being selected. In this
approach we can see that λ is an indication of the significance we give to the final group
preference function in the selection process. If λ → ∞ we select the alternative that it says
is best.

In this approach using D we get the probability P(x j ), the probability of select-
ing x j . If agent i has valuation function Vi , Vi (x j ) being the value of alternative x j to
the i th agent, then for this agent the expected value associated with group preference
function D is V i = ∑n

j=1 P(x j )Vi (x j ). In the special case when λ → ∞ then with

x∗ being the maximally supported alternative we get V i = V (x∗), the value of x∗ to
him.

12. Agent Strategy

Once having been informed of the protocol of the negotiation process each agent must de-
termine a strategy to use in providing its preference function at each stage in the negotiation
process. At a meta level the basis of this strategy is the agent’s objective to trying to get the
best payoff. If the agent can express his individual payoff function as numeric value then
the payoff to the agent is

ṽi =
n∑

j=1

p̃ jvi (x j )

where vi (x j ) is the value of alternative x j to agent i and p̃ j is the probability of se-
lecting alternative x j at the end of the rounds of negotiation. The actual determination
of p̃ j is a complex task as it depends on the final group preference function. Thus not
only is the value of the p̃ j ’s dependent upon the protocol of the negotiation process
but it also depends upon the strategies used by each of the participating agents, more
specifically the preference functions provided by each agent at each stage. In addition
any external information available about the other agent’s preferences may effect the
process.

It is the role of what we shall call an agents negotiation consultant to help determine
the best strategy for this agent. In some cases, where the structure of the negotiation pro-
cess is simple, the determination of a precise optimal strategy may be possible. More
often the problem of determining an optimal strategy is very difficult with much uncer-
tainty as it requires knowledge and judgment about what others will do. It is a game
theoretic problem with incomplete information. More realistically, the best we can hope
for is some approximate and imprecise rules to help guide an agent in the process. We
feel that the construction of these type of rules guiding an agent will require the use
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of the type of tools available in Zadeh’s (1979) fuzzy set based theory of approximate
reasoning.

Here we shall look at a very basic simple situation and see if we can develop some
strategies for our agent. We assume our agent has a well defined preference function,
V1(x j ) is the payoff for x j . We shall assume a two agent negotiation. We shall assume a
linear mediation process. Thus if A1 and A2 are two agent preference function the group
preference D is

D(x j ) = I1

I1 + I2

A1(x j ) + I2

I1 + I2

A2(x j )

where Ii = ∑n
j=1 Ai (x j ). We shall assume a one round negotiation process, thus our

stopping rule is m = 1. Finally we shall assume that the alternative selection is determined
in a probabilistic manner, based on the value in the final group preference function. Thus if

D̃ is the final group support the probability of selecting x j is Pj = D̃(x j )∑n
i=1 D̃(xi )

. Since we are

allowing only one round of negotiation then if A1 and A2 are preference functions provided

by agents we have D̃(x j ) = I1

I1+I2
A1(x j ) + I2

I1+I2
A2(x j ) and hence P̃j = I1 A1(x j )+I2 A2(x j )∑n

i=1 I1 A1(xi )+I2 A2(xi )
.

Using this we the expected payoff to agent one as

V 1 =
∑n

j=1(I1 A1(x j ) + I2 A2(x j )V1(x j )∑n
i=1 I1 A1(xi ) + I2 A2(xi )

where Ii = ∑n
j=1 Ai (x j ).

As the negotiation consultant to agent 1 our task is to tell him what is the structure of A1,
the values to be used for the A1(x j ). The solution to this task involves finding A1(x j ) for

j = 1 to n such that ∂V1

∂ A1(x j )
= 0 for j = 1 to n. An operational solution to this eventually

requires that the consultant knows or is able to estimate A2(x j ), the preference function that
will be supplied by the other agent.

13. Conclusion

We considered the problem of multi-agent negotiation and provided an framework in
which each of the participating agents provides a preference function over the set of
alternatives. This framework required a mediation step in which the individual agent
preference functions are aggregated to obtain a group preference function. It also in-
volved a stopping rule which decided whether an acceptable group preference function
has been obtained or whether the agents must participate in another round of media-
tion. It also contained a selection procedure for choosing a alternative based on the fi-
nal group preference function. We described various implementations for these different
steps. Considerable interest was focused on the implementation of the mediation rule
where we allowed for a linguistic description of the preference aggregation rule. A par-
ticularly notable feature of our approach was the inclusion in the mediation step of a
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mechanism rewarding the agents for being open to alternatives other then simply their most
preferred.

Notes

1. For our primary focus, the formulation of a framework for negotiations, the exact nature of this mapping need

not be known. All that we want to assume is that each agent has some means for formulating a preferance

function over the set of alternatives. We note that when considering the task of developing agent strategies this

becomes of greater importance. . .

2. We note that more precisely we should use the notation Aik indicating the i th agent’s preference function on

the kth round of mediation and use Dk . However, we shall suppress the index indicating the round.
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ABSTRACT

We consider criteria aggregation problems where there exists a prioritization relationship

over the criteria.  We suggest that prioritization between criteria can be modeled by making the

weights associated with a criteria dependent upon the satisfaction of the higher priority criteria.  We

consider a number of aggregation operators in which there exists a prioritization relationship

between the arguments.  We first introduce a prioritized averaging operator.  We next introduce a

prioritized "anding" and then a prioritized "oring" operator.

1. Introduction

Many applications involve the selection or ordering of a group of alternatives based upon

their satisfaction to a collection of criteria.  Typical examples of this are information retrieval , multi-

criteria decision making and database retrieval.  Search engines such as Google require the solution

of this type of problem.

In these problems we have a collection of criteria C = {C1, ..., Cn} and a set of alternatives

X = {x1, ..., xm}.  We further have a measure of the satisfaction of criteria Ci by each alternative,

Ci(x) ∈  [0, 1].  One commonly used approach is to calculate for each alternative x a score C(x) as an

aggregation of the Ci(x), 

C(x) = F(C1(x), ......, Cn(x))

and then order the alternatives using these scores.  The form for F depends upon the users desired

imperative for performing this aggregation.  A commonly used form for F is a weighted average of

the Ci(x).  In particular we calculate

C(x) = ∑
i = 1

n

wi Ci(x)

where the weights satisfy wi ∈  [0, 1] and sum to one.

It is easy to see that this type of aggregation is monotonic, C(x) does not decrease if any of

the Ci(x) increases.  It is also bounded

Mini[Ci(x)] ≤ C(x) ≤ Max[Ci(x)).
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It is also idempotent, if all Ci(x) = a then C(x) = a.  Because of these properties this is an averaging

operator.

Central to this type of aggregation is the ability to trade off between criteria.  In particular 
wk
wi

is the relation between criteria Ci and Ck.  In this type of aggregation we can compensate for a

decrease of ∆ in satisfaction to criteria Ci by gain 
wk
wi

 ∆ in satisfaction to criteria Ck.

In many real applications we do not want to allow this kind of compensation between criteria.

Consider the situation in which we are selecting a bicycle for our child based upon the criteria of

safety and cost.  In this situation we may not allow a benefit with respect to cost to compensate for a

loss in safety.  Here we have a kind of prioritization of the criteria.  Safety has a higher priority.

Consider a problem of document retrieval in which we are looking for documents about the

American revolution and prefer if they are from an academic website and written after 2003.  In this

case the condition of it being about the American revolution has a priority, if it is not about this topic

we not interested.  In organizational decision making criteria desired by superiors generally have a

higher priority then those of their subordinates.

In this work we shall suggest an averaging type aggregation operator that allows for the

inclusion of priority between the criteria.  Central to our approach will be the modeling of priority by

using a kind of importance weight in which the importance of a lower priority criteria will be based

on its satisfaction to the higher priority criteria [1].  As we shall see this result in a situation in which

importance weights will not be the same across the alternatives.

2. A Prioritized Averaging Operator

In the following we assume that we have a collection of criteria partitioned into q distinct

categories, H1, H2, ..., Hq such that Hi = {Ci1, Ci2, ..., Cini
),  Here Cij are the criteria in category Hi.

We assume a prioritization between these categories 

H1 > H2, ... > Hq.
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The criteria is class Hi have a higher priority than those in Hk if i < k.  The total number of criteria is

C = Hi∪
i = 1

q

.  We assume n = ni∑
i = 1

q

 the total number of criteria.

In figure #1 we show the positioning of the criteria

C11, C12, ...., C1n1

C21, C22, ...., C2n2

Cq1, Cq2, ...., Cqnq

.

.

.

.

.

.

Figure #1.  Prioritization of Criteria

We assume that for any alternative x ∈  X we have for  each criteria Cij, a value

Cij(x) ∈  [0, 1] indicating its satisfaction to criteria Cij.

In the following we introduce an aggregation operator which we refer to as the Prioritized

Averaging (PRI-AVE) aggregation operator which allows us to calculate C(x) for any alternative.

The form of our aggregation operator is 

C(x) = ∑
i, j

wij Cij(x)

Here the weights will also be a function of x and will be used to reflect the priority relationship.  In

order to obtain the weights for a given alternative x we proceed as follows.

For each priority category Hi we calculate 
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Si = Minj[Cij(x)]

Here Si is the value of the least satisfied criteria in category Hi under alternative x.  Using this we

will associate with each criteria Cij a value uij called its pre-weight.  In particular for those criteria in

category H1 we have u1j = 1.  For those criteria in category H2 we have u2j = S1.  For those criteria

in category H2 we have u3j = S1S2.  For those criteria in category H4 we have u4j = S1S2S3.

More generally uij is the product of the least satisfied criteria in all categories with higher priority

than Hi.

We can more succinctly and more generally express uij = Ti where

Ti = ∏
k = 1

i

Sk-1

with the understanding that S0 = 1 by default.  We note that we can also express Ti as

Ti = Si-1 Ti-1

This equation along with the fact that T1 = S0 = 1 gives a recursive definition at Ti.

We now see that for all Cij ∈  Hi we have uij = Ti.  Using this we obtain for each Cij a weight

wij with respect to alternative x such that

wij = 
uij

uij∑
j = 1

ni

∑
i = 1

q

Since uij = Ti.this simplifies to wij  =  
Ti

niTi∑
i = 1

q
.  Furthermore if we denote T = niTi∑

i = 1

q

 this further

simplifies to

wij = 
Ti
T

.

It is easily seen that the wij ∈  [0, 1] and sum to one..

Using these weights we then can get an aggregated score x under these prioritized criteria as

C(x) = ∑
i, j

wij Cij(x) = 1
T

 ∑
i, j

Ti Cij(x)

Before studying at the properties of this aggregation technique we look at an example

Example:  Consider the  following prioritized collection of criteria:

H1 = {C11, C12}
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H2 = {C21}

H3 = {C31, C32, C33}

H4 = {C41, C42}

Assume for alternative x we have

C11(x) = 0.7, C12 = (x) = 1

C21(x) = 0.9

C31(x) = 0.8, C23(x) = 1, C33(x) = 0.2

C41(x) = 1, C42(x) = 0.9

We first calculate

S1 = Min[C11(x), C12(x)] = 0.7

S2 = Min[C21(x)] = -.9

S3 = Min[C31(x), C32(x), C33(x)] = -.2

S4 = Min[C41(x), C42] = 0.9

Using this we get

T1 = 1

T2 = S1T1 = 0.7

T3 = S2T2 = (0.9) (0.7) = 0.63

T4 = S3T3 = (0.2)(0.63) = 0.12

From this we obtain 

u11= u12 = T1 = 1

u21 =T2 = 0.7

u31 = u32 = u33 = T3 = 0.63

u41 = U42 = T4 = 0.12

We obtain

T = uij∑
i,j

 = niTi∑
i = 1

4

 = 2T1 + T2 + 3T3 + 2T4

T = (2)(1) + 0.7 + (3)(0.63) + (2)(0.12) = 4.83

From this we get
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w
11

 = w12 = 
T1
T

 = 1
4.83

 = 0.20

w21 = 
T2
T

 = 0.7
4.83

= 0.145

w31 = w32 = w33 = 
T3
T

 = 0.63
4.83

 = 0.13

w41 = w42 = 
T4
T

 = 0.12
4.83

 = 0.025

We now calculate

C(x) = wijCij(x)∑
ij

 = 1
4.83

[(C11(x) + (C12(x)) + 0.7(C21(x)) + 0.63(C31(x) + C32(x) 

                                              + C33(x)) + 0.12(C41(x) + C42(x))]

C(x) = 1
4.83

 (1.7 + (0.7)(0.9) + (0.63)(2) + (0.12)(1.9) = 3.818
4.83

 = .79

We now investigate the properties of this aggregation method.  First we see that this method

is idempotent and bounded by the maximum and minimum of the arguments.  For simplicity let us

denote aij = Cij(x).  Using this we have C(x) = wij aij∑
i,j

.  First consider the case where all the aij

are the same, aij = d.  In this case since wij∑
ij

 = 1 we get C(x) = wij d∑
i,j

 = d and hence the

operation is idempotent.  

Consider now boundedness. Assume  a = Minij[aij] and b = Maxij[aj] then

C(x) = ∑
i, j

wij aij ≥ ∑
i, j

wij a ≥ a

and

C(x) = ∑
i, j

wij aij ≤ ∑
i, j

wij b ≥ b.

C(x) = wijaij∑
ij

 ≤ wijb∑
ij

 ≤ b

We now consider the issue of monotonicity.  For simplicity we shall look at the situation in

which there is only one criteria at each priority level.  Here we denote the criteria Cj, j = 1 to q.  We

shall denote the satisfaction of each criteria to x as  aj = Cj.  We note that in this case with one

criteria at each level, Si = ai.  Here then T1 = 1, T2 = a1 and more generally Ti = ∏
k = 1

i

Sk-1.  Using

this we have

C(x) = 

Ti ai∑
i = 1

q

T
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Let us denote C(x) = M
T

 where M = ∑
i = 1

q

Ti ai and T = ∑
i = 1

q

Ti.  .  For monotonicity to hold we have

to show that 
∂C(x)

∂aj
 ≥ 0 for any j.  This requires that 

T 
∂M

∂aj
 - M 

∂T

∂aj

(T)2
 ≥ 0. 

Hence we must show that the numerator is non-negative,

T 
∂M

∂aj
 - M 

∂T

∂aj
 ≥ 0.

Before preceding we note that 
∂Ti

∂aj
 = 0 for i ≤ j and 

∂Ti

∂aj
 = 

Ti
aj

 for i > j.  We also note that 

M = ∑
i = 1

q

Ti ai = ∑
i = 1

q

Ti+1 since Ti ai = Ti+1.  However we shall find it more useful to express 

M = ∑
i = 2

q+1

Ti.

We shall denote A = 
∂M

∂aj
  = 1

aj
 ∑
i = j+1

q+1

Ti.   We shall also let B = 
∂T

∂aj
 hence since T = ∑

i = 1

q

Ti

we have B = 
∂T

∂aj
  = 1

aj
 ∑
i = j+1

q

Ti.  From this we observe that A ≥ B.  In the following we shall find it

convenient to denote E = ∑
i = 2

j

Ti.

Consider now the term T 
∂M

∂aj
 - M 

∂T

∂aj
  = AT - BM.  We now observe that 

T = ∑
i = 1

q

Ti = ∑
i = 1

j

Ti + aj B.

Since T1 = 1 then T = 1 + E +  aj B.  We further observe that 

M = ∑
i = 2

q+1

Ti. = E + aj A.

Using the relations we see that 

AT - BM = A( 1 + E +  aj B) - B( E + aj A) = A + EA + aj BA - BE - aj BA

AT - BM = A + E(A - B)

Since A ≥ B it follows that AT - BM ≥ 0

The proof of monotonicity in the case where we can have multiple criteria at each level,

although slightly more complicated, follows in the same spirit
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We now look at some further properties of the proposed aggregation method.  We recall

Hi = {Cij | j = 1 to ni} where the criteria in category Hi have  priority over those in Hk if ii i < k.

Again letting aij = Cij(x) we have  Si = Minj[aij] and So = 1 and Ti = ∏
k = 1

i

Sk-1.  Here with uij = Ti

and T = ∑
i = 1

q

ni Ti we have wij =  
uij

T
 = 

Ti
T

 we have 

C(x) = ( ∑
j = 1

ni

∑
i = 1

q

wij aij) = 1
T

Ti( aij∑
j = 1

ni

)∑
i = 1

q

Letting Ai = aij∑
j = 1

ni

 we have

C(x) = 1
T

Ti Ai∑
i = 1

q

We see that the weight associated with the elements in the ith category are 
Ti
T

 where

Ti = ∏
k = 1

i

Sk-1.  Thus the criteria in Hi contribute proportion to the product of the satisfaction of the

higher order criteria.  Thus poor satisfaction to any higher criteria reduces the ability for

compensation by lower priority criteria.

We also observe that if there exists some category Hr such that Crj(x) = 0 for some criteria

in Hr.then Sr = 0 and Ti = 0 for i > r and hence C(x) = 1
T

Ti Ai∑
i = 1

r

. 

Note:  While in the preceding we assumed Cij(x) ∈  [0, 1] this is not necessarily required.  If we let

Fij R → [0, 1]  be some function from the real numbers into the unit intervals such that Fij(Cij(x)) is

some measure of how satisfied we are with a score Cij(x) for criteria Cij then we allow the values of

Cij(x) be any number if we calculate

Si = Minj[Fij(Cij(x) ]

Here we just transfer the Cij(x) into numbers in the unit interval for calculating Si.

3. Alternative Determination of Weights

In the preceding we introduced a prioritized multi-criteria aggregation method in which our

criteria where partitioned into q categories, Hi = { Cij/j = 1 to ni } where category Hi had priority

9



over Hk if i < k.  For a given alternative x we shall find it convenient in the following to denote Cij(x)

= aij.  Using this notation then we defined

So = 0

Si = Mini[aij] for i = 1 to q

Ti = ∏
k = 1

i

Sk-1 for 1 = to q

T = niTi∑
i = 1

q

With wij = 
Ti
T

 we obtained as our aggregated value

C(x) = ∑
i = 1

q

wijaij∑
j = 1

ni

 = 1
T

 ∑
i = 1

q

Tiaij∑
j = 1

ni

Letting Ai = aij∑
j = 1

ni

 we can express this as C(x) = 1
T

 TiAi∑
i = 1

n

.

In the preceding we assumed that the satisfaction to the priority class Hi = {Ci1, ..., Cini
}

under alternative x was determined by the least satisfied criteria in Hi, Si = Minj[Cij(x) ].  Here we

shall suggest some alternative methods for calculating Si.

One method we shall consider will be based on the OWA aggregation operator [2, 3].  Here

we associate with each priority class Hi a vector Vi of dimension ni called the OWA weighting

vector.  The components Vik of Vi are such that Vik ∈  [0, 1] and ∑
k = 1

ni

Vik = 1.  Additionally we let

indi(k) be an index of function so that bik(x) = Cindi(k)(x
) is the kth largest of Cij(x).  Using this

we now calculate

Si = ∑
k = 1

ni

Vik bik(x)

We see that if Vini
 = 1 and Vik = 0 for k ≠ ni then we get Si = Minj[Cij(x)], the original method.

An important special case is where Vik = 1/ni for all k.  In this case Si = 1
ni

 Cij(x)∑
j = 1

ni

.  Here we

take as Si the average of the satisfactions of the criteria in category Hi.  Another special case is when

Vil = 1 and Vik = 0 for k ≠ 1.  In this case Si = Maxj[Cij(x) ].  Here we take Si as the score of the

most satisfied criteria in category Hi.  Many other weight vectors are possible for example if Viq = 1

10



for some q Si simply becomes the qth largest of the Cij(x).

In this framework we can associate with each weighing vector  Vi a measure called its

attitudinal character denoted, A-C(Vi) [4].  We define this as

A-C(Vi) =  1
ni - 1

∑
k = 1

ni

Vik (ni - k)

It can easily be shown [2] that for the case where Vini
 = 1 we get A-C(Vi) = 0.  For the case where

A-C(Vi) = 1
ni - 1

 then A-C(Vi) = 0.5 and for the case where Vi1 = 1 we have A-C(Vi) = 1.

If we denote A-C(Vc) = αi then we see in figure #2 the relationship between the value of αi

and the form for the calculation of Si.  Here then αι  can be seen as a measure of the tolerance in

determining the satisfaction of the category.  While it is not necessary, it would be seen that the

default situation is to assume αι  is the same for all Hi.

α
i

0 0.5 1

S
i = Min [Cj ij(x)] Ave [Cj ij(x)]S

i = Max [Cj ij(x)]S
i =

Figure #2.  Relationship between ααααi and the form of Si.

Many of the techniques available for calculating the OWA weights [5] can be tailored for this

particular application.  A particularly interesting possibility is to use a variation of the method

originally suggested by O'Hagan [6- 8].  In this case we would supply a desired level of tolerance αi

and solve the following mathematical programming problem for the Vik

Min (ViK)2∑
K = 1

ni

      Such that:  1
ni - 1

∑
k = 1

ni

Vik (ni - k) = αi 

Vik∑
k = 1

ni

 = 1

Vik ≥ 0

We provide an of the preceding variation using the earlier example

Example:H1 = {C11, C12}, H2 = {C21}, H3 = {C31, C32, C33}. H4 = {C41, C42}
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For alternative x we have

C11(x) = 0.7, C12(x) = 1

C21(x) = 0.9

C31(x) =0 .8, C32(x) = 1, C33(x) = 0.2

C41(x) = 1 C42(x) = 0.9

Consider the case where Si = Maxj[Cij(x)].  Here then

S1 = 1

S2 = 0.9

S3 = 1

S4 = 1

From this we get :

T1 = 1

T2 = S1 T1 = 1

T3 = S2 T2 = 0.9

T4 = S3 T3 = 0.9

In this case T = niTi∑
i = 1

4

 = (2)(1) + (1)(1) + (3)(0.9) + (2)(0.9) = 7.5

With C(x) = 1
T

Ai Ti ∑
i = 1

4

 where Ai = Cij∑
j = 1

ni

(x) we have

C(x) = 1
7.5

((1)(1.7) + (1)(.9) + (0.9)(2) + (0.9)(1.9) = 1
7.5

(6.11) = 0.815

Another approach for calculating the Si involves associating with each criteria in Hi an

additional local weight.  In this case our form for Hi is 

Hi= {(Cij, gij) | j = 1 to ni }

where the gij indicates the importance of Cij in calculating Si.  Here we assume that gij ∈  [0, 1] and

gij∑
j = 1

ni

 = 1.  Using these weights we can calculate Si = gijCij(x)∑
j = 1

ni

.

An interesting special case of this is where some criteria Cij has gij = 0.  In this case the

criteria plays no role in the determination of Si but still is able to contribute to the overall calculation

of C(x).
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Another available method for calculating the Si involves the idea of combining these local

weights with a tolerance level.  Here we assume for each Hi we have Hi = {(Cij, gij), j = 1 to ni},

gij ∈  [0, 1] and gij∑
j = 1

ni

 = 1, where again g
ij

 is the indication at the importance of Cij in calculating

Si.  In addition we assume a tolerance level α i ∈  [0, 1] associated with Hi.  Using one of the

methods for generating OWA weights we can obtain a set of OWA weights, Vik, for k = 1 to ni.  Let

ndi be an index such ndi(k) is the index of the k largest of the Cij(x).  That is bik = Ci,ndi(k)(x) is

the value of the k most satisfied criteria in Hi.  With dik = gi,ndi(k)
 being the importance weight

associated with this kth most satisfied criteria on Hi we calculate  hik = 
dik ⋅ Vik

dik ⋅ Vik∑
k = 1

ni
  Using this we

calculate Si = hik bik∑
K = 1

ni

.  In the special case when Vik = 1
ni

 for all k this reduces to the weighted

average introduced earlier, Si = gij ⋅  Cij(x)∑
j = 1

ni

.  

4. Prioritized "and" Operator

In the following we shall consider a related aggregation method called prioritized anding.

We refer to this as the PRI-AND aggregation operator.

We recall that the "and" operator is generalized by a t-norm [9, 10].  A t-norm is a mapping.

R: [0. 1] × [0, 1] → [0, 1]

having the properties

1. Symmetry: R(a, b) = R(b, a)

2. Monotonicity:  If a ≥ c and b ≥ d then R(a, b) ≥ R(c, d)

3. Associativity: R(a, R(b, c)) = R(R(a, b), c)

4. 1 as identity:   R(1, a) = a

The associativity property allows us to extend this to any number of arguments.  An interesting

property of the t-norm is R(a1, ..., an) ≥ R(a1, ..., an, an + 1).
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A large number of possible examples of t-norms exist [11].  Three of the most important are

RM(x, y) = Min(x, y) Minimum

RP(x, y) = xy Product

RL(x, y) = Max(x + y - 1, 0) Lukasiewicz

It can be shown that for any x, y, RM(x, y) ≥ RP(x,y) ≤ RL(x, y).  It is also true that for any t–norm

R it is the case that RM(x, y) ≥ R(x, y)

We now look at the issue of performing the t-norm aggregation when the arguments have

importance weights associated with them [12, 13].  Consider the aggregation R((a1, w1), (a2, w2), ...,

(an, wn)) where wj ∈  [0, 1] is the importance weight associated with the argument aj.  In [14] Yager

suggested that we can implement this aggregation as

R((a1, w1), ...., (an, wn)) = R(ai
wi, ..., an

wn).

For example in the case where R = RP we have

R((a1, w1), ...(an, wn)) = ai
wi∏

i = 1 

n

.

In the case where R = RM then 

R((a1, w1), ...(an, wn)) = Mini[ai
wi]

We note that if wi = 0 then ai
0 = 1.  Since one is the identity of the t-norm then criteria with zero

importance have no effect in the calculations of R(ai
wi, ... an

wn).

In [15] Yager suggested alternate methods for implementing weighted t-norm aggregations.

While we shall not discuss these here we do note that the methodology introduced in the following

can be easily applied to any of the other methods for including importance.

In the following we introduce a prioritized 'and' operator.  We refer to this as the PRI-AND

aggregation operator.

Again we have a collection of criteria partitioned into q categories {H1, ..., Hq} such that Hi

= {Ci1, ..., Cini
}.  Again we assume a prioritization of the categories, H1 > H2 ....> Hq.  Our

objective is to obtain a prioritized 'anding' aggregation of the satisfaction of these criteria by some

alternative x.  We assume Cij(x)∈ [0, 1] is the satisfaction of criteria Cij by alternative x.  

We first calculate for each category Si = Minj[Cij(x)].  We next calculate
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Ti = ∏
k = 1 

i

Sk-1

with the understanding that So = 1 by definition.  We now define the prioritized weight associated

with Cij as wij = Ti.  We now calculate the PRI-AND aggregation of the Cij(x) using the t--norm R

as

C(x) = R
i, j

[(Cij(x))wij]

Since wij = Ti then C(x) = R
j

R
i

[(Cij(x))Ti]

In the case where R is the Min then we get C(x) = Mini[Minj(Cij(x)
Ti)]

Noting that Minj(Cij(x)) = Si we have 

C(x) = Mini[Si
Ti]

In the case where R is the product t-norm we have 

C(x) = Π
j

Π
i

[(Cij(x))Ti]

If we get Di(x) = ∏
j =1

ni

Cij(x) then we get 

C(x) = ∏
1=1

q

(Di)
Ti

If we take the log of the above we have 

Log(C(x)) = ∑
i = 1

q

Ti Log(Di)

Since Di(x) = ∏
j =1

ni

Cij(x) then Log(Di) = ∑
j = 1

ni

Log(Cij(x)). Hence in this case we have 

Log(C(x)) = ∑
i = 1

q

Ti Log(Di)  and  Log(Di) = ∑
j = 1

ni

Log(Cij(x))

This form looks very similar to the weighted average where 

C(x) = 1
T

 TiAi∑
i = 1

q

   and    Ai = ∑
j = 1

ni

Cij(x).

5. Prioritized "or" Operator

We now consider a related aggregation method the  prioritized anding.  We refer to this as
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PRI-OR aggregation operator.

We recall that the "or" operator is generalized by a t-conorm [9], a mapping.

P: [0. 1] × [0, 1] → [0, 1]

having the properties

1. Symmetry: P(a, b) = P(b, a)

2. Monotonicity:  If a ≥ c and b ≥ d then P(a, b) ≥ P(c, d)

3. Associativity: P(a, P(b, c)) = P(P(a, b), c)

4. 0 as identity:   P(0, a) = a

A property of the t-conorm is P(a1, ..., an) ≤ P(a1, ..., an, an + 1).

Three important are examples of this are 

PM(x, y) = Max(x, y) Maximum

PS(x, y) = x + y - xy Probabilistic  Sum

PL(x, y) = Min(x + y, 1) Lukasiewicz

It is well know that for any t–conorm P it is the case that PM(x, y) ≤ P(x, y), max is the smallest.

We now look at the issue of performing the t-conorm aggregation when the arguments have

importance weights associated with them.  Consider the aggregation P((a1, w1), (a2, w2), ..., (an,

wn)) where wj ∈  [0, 1] is the importance weight associated with the argument aj.  In [12] Yager

suggested that we can implement this aggregation as

P((a1, w1), ...., (an, wn)) = P(w1 a1, w2 a2, ......, wn an).

We aggregate the product of wj times aj.  For example in the case where P = PM we have

PM((a1, w1), ...., (an, wn)) = Maxi[wi ai]

Consider now the case of probabilistic sum.  Since Rp(x. y)  = 1 - (1- x)(1 - y) then 

Ps(a1, w1), ...., (an, wn)) = 1 -  ∏
i = 1

n

(1 - wi ai)

We note that if wi = 0 then wi ai = 0.  Since zero is the identity of the t-conorm then criteria with

zero importance have no effect in the calculations of P(w1 a1, w2 a2, ......, wn an).

In the following we introduce a prioritized 'or' operator, the PRI-OR aggregation operator.

Here we have a collection of criteria partitioned into q categories {H1, ..., Hq} such that Hi =
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{Ci1, ..., Cini
}.  Again we assume a prioritization of the categories, H1 > H2 ....> Hq.  Our objective

is to obtain a prioritized 'oring' aggregation of the satisfaction of these criteria by some alternative x.

We assume Cij(x)∈ [0, 1] is the satisfaction of criteria Cij by alternative x.  

We first calculate for each category Si = Maxj[Cij(x)].  We next calculate

Ti = ∏
k = 1 

i

Sk-1

with the understanding that So = 1 by definition.  We define the prioritized weight associated with

Cij as wij = Ti.  We now calculate the pri-or aggregation of the Cij(x) using the t--conorm P as

C(x) = P
i, j

[(wij Cij(x))]

Since wij = Ti then C(x) = P
j

P
i

[(Ti Cij(x))

To get a feel for this we consider the special case where each category has just one element,

Hi = {Ci} and P is the probabilistic sum.  In this case Si = Ci(x) with So = 1.  Furthermore

Ti = ∏
k = 1 

i

Sk-1 =  ∏
k = 1 

i - 1

Ck(x).  In this case 

C(x) = 1 -  ∏
i = 1

q

(1 - (Ci(x) ∏
k = 1 

i - 1

Ck(x))) =   1 -  ∏
i = 1

q

(1 - ∏
k = 1 

i 

Ck(x)) 

For the case where q = 2 we have

C(x) = 1 - (1 - C1(x)) (1 - C1(x)C2(x)) =  C1(x) +  C1(x) C2(x) - C1(x)C1(x) C2(x)

C(x)   = C1(x)(1 + C2(x)(1 C1(x)) =  C1(x)(1 +  C2(x) C1(x))

Thus if  C1(x) = 1 then C(x)  = 1, C1(x) = 0 then  C(x)  = 1.  If for example C1(x) = 0.7 then 

C(x) =  0.7(1 +  0.3 C2(x))

On the other hand if C2(x) = 0 then C(x) = C1(x) while if C2(x) = 1 then

C(x) = C1(x) + C1(x) C1(x).

6. Conclusion

We considered criteria aggregation problems where there is a prioritization relationship over

the criteria.  We suggested that prioritization between criteria can be modeled by making the weights

associated with a criteria dependent upon the satisfaction of the higher priority criteria.  This resulted
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in a situation in which the weights associated with the criteria depended upon the alternative being

evaluated.  We introduec a number of aggregation operators in which there exists a prioritization

relationship between the arguments.  We first introduced a prioritized averaging operator.  We next

introduced a prioritized "anding" and then a prioritized "oring" operator.
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